

Metadata Extraction Tool
Software Architecture

Version: 3.5.

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 1

Table of Contents

Table of Contents ...1
Background ..2
Solution Architecture ..3

UI Classes ..4
Files..5
Adapters...6

Adapter base components ..6
Generic Adapter Components...7
I/O Utilities ..7
POI ...9
Parsing a file ...9

XSLT Translation Interface...9
Processing adapter output with XSLT ...10

Output files ...11
Format (DTDs)..11
Objects ...11

Logging ..12
Configuration ..12
Developing a new Adapter..13
Phase-1: Development ...14

Creating MPEG4 Adapter ...14
Phase-2: Configuration...15

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 2

Background

The National Library of New Zealand Te Puna Mātauranga o Aotearoa (National Library)
has been developing its approach to the management of electronic material. Highlighted
by this development is the need for a Digital Archive and the desire to improve access to
its collections via digitisation. As part of this work it has become clear that preservation of
digital materials is emerging as a new business need for the Library and that preservation
metadata is an integral component of successfully meeting that need.

A high proportion of the preservation metadata will be in narrative format and will require
manual entry by Library staff. A significant subset of the data however, relating to
technical file characteristics, can be automatically extracted from the digital object by
reading the file header details. This successful extraction of preservation metadata has
been proved in a previous National Library proof of concept project. The automated
capture of this information will significantly reduce the amount of manual data entry
required from Library staff.

The work that is the focus of this document is to take the software developed in the Proof
of concept and package it to support the full set of requirements for a metadata
extraction tool. Key requirements include:

• Support for objects (complex and simple objects) where files are grouped into
objects.

• Logging
• Preparing the code base, design and deployment for production.

This document is intended to be a foundation for further development in this area by the
National Library.

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 3

Solution Architecture

The document: Metadata Extraction Tool – Solution Architecture, outlines the solution at
a high level. This document begins where the solution architecture finishes and details
the software components of the system.

The software components for each stage will be presented in following sections.

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 4

User Interface

UI Classes

The user interface base classes appear in the diagram below. The Main class is the
primary Graphical User interface component. It handles all user interaction via Java
Swing components. It is multithreaded so that the act of extracting metadata can take
place in it’s own low priority thread. Independent threading is required for several
reasons:

1. If the thread is given a low priority it will cause less contention for the CPUs time.
When the CPU is free the extraction software will use 100% of the available
processing cycles. However, when the processor has a more important task the
software will yield processor cycles to that task.

2. The user can be given updates via the UI about the progress being made. If
processing occurred in the event handler thread the UI would not be updated until
processing was complete - which is too late.

3. The user can cancel the extraction process if required because the event handler
thread will be available to handle the press of the stop button.

Main

fi leList : FileLis t = new FileList ()
configModel : ConfigModel = new ConfigModel ()

Main()
jbInit()
showAbout()
error()
openFile()
main()
getSelected()
removeSelected()
harvestSelected()
exit ()
openFiles ()
processWindowEvent()
exitMenuItem_actionPerformed()
openMenuItem_act ionPerformed()
aboutMenuItem_actionPerformed()
exit_act ionPerformed()
add_act ionPerformed()
harvest_actionPerformed()
remove_actionPerformed()
harvestMenuItem_ac tionPerformed()
fi leTable_valueChanged()
configSelect_itemStateChanged()

(f ro m ui)

User Interface

CmdLine

HELP_MODE : String = "help"
SHOW_MODE : String = "show"
EXTRACT_MODE : String = "extract"
CONFIG_PARAM : String = "config"
ADAPTER_PARAM : String = "adapters"
MAP_PARAM : String = "maps"

main()
extract()
processFiles()
getFiles()
showConfig()
showHelp()

(from ui)

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 5

Files

Incoming files that are selected for processing are parsed by a set of adapters (parsers)
that know how to read the binary file format of the file. Each file will have it’s own unique
file format which is obtained from the public domain, or in some cases the software
vendor itself. Because of the proprietary nature of some file formats it may be necessary
to obtain the formats by leveraging the National Libraries status as a non-profit,
educational organisation.

For the Proof of Concept (POC) it was decided to focus on two types of files, TIFF and
Microsoft Word. While TIFF has not changed format since creation in the 80’s MS Word
files have gone through several iterations. The POC clearly identified the viability of
opening and reading input files across types and versions within types. TIFF and .DOC
files have been selected as good file formats to prove this.

Since the development of the POC, support has been added for the following types:

• Bitmap
• Microsoft Excel
• GIF
• HTML
• JPG
• MP3
• Open Office
• PDF
• Microsoft PowerPoint
• TIFF
• Wave Audio
• Microsoft Word
• WordPerfect
• Microsoft Works
• XML
• FLAC
• BWF
• ARC

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 6

Adapters

Each adapter registered in the system (see configuration) is responsible for parsing a
specific input file type. Each adapter must extend the DataAdapter class, which defines
several methods:

1. acceptsFile(File). This

method returns true or
false depending on
whether the adapter can
process the given input
file.

2. adapt(File,
DataAdapter). This
method is the main
method of any adapter.
When called the
adapter must parse the
given file into the
DataAdapter

3. getOutputType().
Returns a string value
containing the output
DTD of the data that the
adapter returns as a
result of parsing.

4. getInputType(). This
method returns a string
value containing the type of file (Mime Type) that the adapter reads. It is possible that
Adapters might be chained together in the future so provision is made for the Input
type to be a DTD in addition to a mime type.

Adapter base components

Other base classes that fall into the Adapter package are:
� DataHandler. This class is modelled after the SAX Document Handler class. It is to

be implemented by classes that are interested in the progress of a parser as it parses
a file. Adapters use this class as a sort of “Output stream” to write specific information
out about a file.

� XMLDataHandler. This concrete class is a specific implementation of the DataHandler
class. The XMLDataHandler is given an output stream upon creation, which it uses to
output correctly formatted XML to. It handles all events, and outputs the passed in
information into the output stream.

� AdapterFactory. This class is responsible for returning an adapter that is capable of
parsing a given input file. It does this by holding a list of all adapters and their
associated input types (see configuration) and using this list to identify the appropriate
Adapter. It also uses the acceptsFile() method that all Adapters implement to query
each adapter about their ability to parse a file. This means that if there are a lot of
Adapters the AdapterFactory may take some time to find the correct Adapter for a file.
Also not handled by the tool is the case where multiple adapters think they can
process a file – at this stage the first adapter that returns true from the acceptsFile()
method gets that job (so ordering in the configuration file is important)

AdapterFactory

init()
AdapterFactory()
addAdapter()
addAdapter()
getInstance()
getAdapters()
getAdapters()
getAdapters()

(from natl ib)

-$instance

DataAdapter

acceptsFile()
adapt()
getOutputType()
getInputType()

(from adapter)

ObjectRenderer

renderObject()

(from adapter)

<<Interface>>

XMLDataHandler

stack : int = 0
open : boolean = false

XMLDataHandler()
write()
indent()
startDocument()
endDocument()
startRecord()
startRecord()
element()
element()
element()
element()
element()
endRecord()
error()

(from adapter)

DataHandler

startDocument()
endDocument()
startRecord()
startRecord()
endRecord()
error()
element()
element()
element()
element()
element()

(f rom adapter)

<<Interface>>

Adapters

DefaultObjectRenderer

DefaultObjectRenderer()
renderObject()
addRenderer()
getRenderer()

(from adapter)

HashMap
(from util)

#renderers

DefaultObjectRenderer
holds multiple other
renderers for common
types. When a know
type is encountered the
task is delegated to one
of these.

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 7

Generic Adapter Components

There are two adapters in the
system that are considered
generic:

� DefaultAdapter. Will handle

any file, outputting information
about the file gathered from the
file system (i.e. no parsing).
Care should be taken when
registering this Adapter in the
configuration so that it is the
last adapter registered. This is
because it will always accept
any file, stealing other adapters
chances of parsing that file.

� XMLAdapter. This adapter is
capable of taking any input
XML file and processing it
according to an XSLT script.
Setup parameters for this Adapter are:

o The input DTD filename.
o The XSLT script filename.
o The output DTD filename.

I/O Utilities

There is a number of parser utilities included with the application code. These utility
classes include.
� Element: This class is the root

class for all Elements. An element
is a part of a file that represents a
complete object. A complete
object can be a number with a
certain word length, a Date or a
number of other base types. An
element can also be a compound
collection of elements that together
have meaning (e.g. a header
record).

� DataSource: A DataSource is a
generic source of data that is to be
parsed. The DataSource interface
must be implemented by all
sources of Data. A DataSource is
meant to be a generic layer that
overlays a random access data
source of some description.
DataSources are supposed to be
generic however so non-random
access data sources (FTP, HTTP, socket etc…) should be able to be accommodated.

� FileDataSource: A concrete implementation of a DataSource. This DataSource
represents a file on the local file system.

DefaultAdapter

adapt()
acceptsFile()
getOutputType()
getInputType()

(from any)

DataAdapter

acceptsFile()
adapt()
getOutputType()
getInputType()

(from adapter)

Adapters

XSLTAdapter

inputDTD : St ring
tformXSLT : String

XSLTAdapter()
setInputDTD()
setXSLT()
getOutputType()
getInputType()
adapt()
acceptsFile()

(from xslt)

FXUtil

getString()
getLong()
getInteger()
getShort()
getByte()
getChar()
setProperty()
getPropertySetters()
mapProperyValueToMethod()

(from fx)

Element

Element()
read()
write()
getNumericalValue()
getLittleEndian()
getBigEndian()

(from fx)

CompoundElement

names[] : String

CompoundElement()
CompoundElement()
read()
putValue()

(from fx)

HashMap

HashMap()
HashMap()
HashMap()
HashMap()
size()
isEmpty()
containsValue()
containsKey()
get()
put()
remove()
putAll()
clear()
clone()
keySet()
values()
entrySet()

(from uti l)

-elements

File Exchange Elements

DataSource

getData()
getData()
setPosition()
getPosition()
close()

(f rom fx)

<<Interface>>

FileDataSource

FileDataSource()
getInputStream()
hasMoreData()
getData()
getData()
setPosition()
getPosition()
close()

(f rom fx)

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 8

� FXUtil. A collection of methods to be used by specific implementations of Element for
the conversion of values to primitive types.

� CompoundElement. This Element is a collection of smaller elements. It is useful for
reading header blocks. In fact it is expected that most files are made up of elements
within compound elements within parent compound elements (i.e. a “tree” of
elements). A compound element usually returns the results of the read() method as a
HashMap of all the results of it’s children elements. A useful addition to
CompoundElement is the capability of passing a JavaBean class to the Compound
element for the results of the read() to be stored in.

There are several implementations of the Element class, key ones are:

� IntegerElement. This element reads an integer with a specified word length from the
DataSource. It is capable of reading the integer as most significant byte first (big
endian: Java & general Macintosh Default – i.e. the right way) or least significant byte
first (little endian: C/C++ and general Intel platform).

� DateElement. This element reads a date from the DataSource. The format of the
date is the specified pattern.

� ExactMatchElement. This element reads a block of bytes that should exactly match a
specified block of bytes. If it doesn’t, an exception is thrown. This is useful to build
into parsers that require certain versions of the input file to work correctly.

� PascalStringElement. This is a string element where the first 2 bytes represent the
length of the string. (Like Pascal)

� PositionalElement. Reads a variable length block of bytes. It doesn’t do any
interpretation of the block.

� RationalElement. Reads two longs (4bytes). The first one is the numerator, the
second is the denominator (divisor). The resulting double value is returned.

� StringElement. Reads a string from the DataSource. The string can be either a fixed
length or null (00x0) terminated.

DateElement

pattern : String

DateElement()

read()

(from fx)

Element

Element()
read()
write()
getNumericalValue()

getLittleEndian()
getBigEndian()

(from fx)

ExactMatchElement

match : String

ExactMatchElement()
read()

(f rom fx)

D ataSourceE lemen t

of f set : long = - 1

DataSourceElement()
DataSourceElement()
read()

(from fx)

PascalStringElement

P ascalS tringE lement()
read()
getValue()
readBlockSize ()

(from fx)IntegerElement

BY TE_SIZE : int = 1
SHORT_SIZE : int = 2
INT_SIZE : int = 4
LONG_SIZE : int = 8
DOUBLE_SIZE : int = 8
HEX_FORMAT : int = 1
DECIMAL_FORMAT : int = 2
BINARY _FORMAT : int = 3
OCTAL_FORMAT : int = 4
by tesize : int = BY TE_SIZE
elementCount : int = 1
bigEndian : boolean
outputFomrmat : int = HEX_FORMAT

IntegerElement()
IntegerElement()
read()

getNumericalValue()
...

(from fx)

+of f setReader

-length

PositionalElement

length : int = 0

PositionalElement()

read()

(from fx)

RationalElement

RationalElement()
read()

(from fx)

Str ingElement

length : int = - 1
terminator : by te = 0x00

StringElement()
StringElement()

StringElement()
read()
getValue()
readBlockSize()

(from fx)

TokenElement

tokens : Stri ng

TokenElement()

read()

(from fx)

V alidat edInte gerElement

expected : long = 0
v alueFalse : Object
v alueTrue : Object
throwsException : boolean = f alse

ValidatedIntegerElement()
ValidatedIntegerElement()
ValidatedIntegerElement()
read()

(from fx)

File Exchange Elements

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 9

� TokenElement. Reads a block of bytes until the given termination character is
reached. This will be useful for the reading of comma-separated files.

� ValidatedIntegerElement. This element reads an integer with a specified word length
that should exactly match an input. If it doesn’t an exception is thrown. This is useful
to build into parsers that require certain versions of the input file to work correctly.

POI

POI is a third party tool similar to the “elements” listed above. The POI specification and
library is designed to read the OLE2 file format, which is used by Excel and Word 6.0+.
Additional information
about POI can be
found at:
http://jakarta.apache.o
rg/poi/index.html. See
appendix B for
information about how
the POC uses the POI
library.

Parsing a file

The way in which a file
is parsed is best
described as a
sequence diagram
(right). The user
selects the file and the
process of
“harvesting”
information from it is
begun. First the
AdapterFactory is
asked to return an Adapter to do the job. The adapter is then asked to parse the file into
a DataHandler, which in turn streams characters into an output stream. The description
above is a simplistic version of what actually happens. Normally there is another layer of
translation to take the output from the Adapter and turn it into a uniform XML file (i.e. a
specified DTD like nlnz_presmet.xsd). This translation is covered in the next section.

XSLT Translation Interface

Before a file is output in its’ native file format it may be translated into another, more
generic file format. The component that does this is an XSLT translator that acts like a
DataHandler. This special type of DataHandler implements all the standard DataHandler
methods but instead of outputting directly into an output stream it imposes a layer of
translation before outputting into an output stream. The XSLT scripts make use of Java
extensions to call functions that have been written in Java to perform some functions best
done in a procedural language.

 : System
aFile : File :

AdapterFactory
 : DataAdapter :

ObjectRenderer
 :

XMLDataHandler
 :

FileOutputStream

selects

getAdapters(File)

creates: XMLDataHandler(OutputStream) - uses the file output stream

adapt(File, DataHandler)

renderObject()
write()

File

returns the DataAdatper for the job

searches for a DataAdapter

acceptsFile(File)

true/false

processes all elements and records for this adapter

creates an output file for the storageof results

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 10

Processing adapter output with XSLT

The XSLT scenario looks very similar to the previous file-processing diagram but has
additional steps that transform the output of the adapters into a generic format. XSLT

scripts are used to perform this function. The library used to perform the translation is
the Apache Xalan project. Xalan is an open source library for the processing of XML
files. It conforms to the JAXP standard (from Sun Microsystems), which is a standard
feature of Java 1.4 (but must be included separately under Java 1.3 or less). For more
information on Xalan see the web site: http://xml.apache.org/xalan-j/index.html.

adapt(File, DataHandler)

 : System
 :

AdapterFactory
 : DataAdapter :

XMLDataHandler
 :

FileOutputS tream
Buffer :

ByteArrayOutputStream
 : M etaUtil

getAdapters(File)

returns the DataAdatper for the job

processes all element s and records for t his adapter

creates: XM LDataHandler(OutputStream) - uses the temporary output stream

creates an output file for the storageof results

creates an output buffer for the temporary storage of results

transform(xslt, buffer)

transformed buffer

write(the transformed buffer)

See: file processing (simple)

See: file processing (simple)

See: transformation maps diagram for how the transformation script (xslt) ...

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 11

Output files

The tool is configured to output several formats of XML

Format (DTDs)

In addition to the native DTD for a particular file there is one other type of standard
metadata file (although any number can be added):

1. nlnz_presmet.xsd. This is an XML schema that closely represents the National
Library Preservation Metadata Data Dictionary.

Objects

Objects are logical groupings of a collection of files’ metadata. This means that there will
be many files inputting metadata information into a single output file (known as a
complex object). The ‘grouping’ will be entirely arbitrary and in many cases will be
directed by curators at the library. An example of an object that has related collections of
files is a website. The site itself is the object and all files and folders found within it are
logically part of that object.

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 12

Logging

The logging window displays the current log. You can elect to clear the current log and
start it fresh, or filter the current log to only show a certain level of logging.

Critical.
 The application has had a critical failure, harvesting could not be considered
unstable and the application should be restarted.

Error.
 An error is an application problem or an problem while harvesting metadata that is
isolated to the object being harvested. Chances are other objects were unaffected and
harvesting can continue.

Debug messages
 Information about program behaviour, there should be very little of these
messages in the production system.

Information message
 Superfluous information about application behaviour. This includes things like
usage reporting.

Program Workings
 Similar to debug, these messages are closely related to system functions – they
may not be very
meaningful to most
operators, there
should be very little
of these messages in
the production
system.

Configuration

A single config file
configures the tool.
This file is read by
the Config class on
start-up. The config
can control:
� some application

attributes.
� Adapters
� XSLT maps.
� Output formats.

Each of these
configuration
elements is
discussed later in
this section.

The way in which the
Config reads the
config.xml file is as
follows:

Config

baseXMLDir : String = ""
appName : String = "Harveser"
copyright : String = "(C) 2002 Sytec Resources Limited"
HARVESTER_TAG : String = "harvester"
PARAMETER_TAG : String = "parameter"
XML_BASE_TAG : String = "xml-location"
TITLE_TAG : String = "title"
COPYRIGHT_TAG : String = "copyright"
ADAPTERS_TAG : String = "adapters"
MAPS_TAG : String = "xslt-map"
MAP_TAG : String = "map"
ADAPTER_TAG : String = "adapter"
CLASS_TAG : String = "class"
OUTPUT_DTD_TAG : String = "output-dtd"
INPUT_DTD_TAG : String = "input-dtd"
XSLT_TAG : String = "xslt"
DOC_NAME_TAG : String = "doc-name"
CONFIGURATIONS_TAG : String = "configurations"
CONFIGURATION_TAG : String = "configuration"
NAME_TAG : String = "name"
VALUE_TAG : String = "value"
OUTPUT_DIRECTORY_TAG : String = "output-directory"
DIR_NAME_TAG : String = "dir"
URL_TAG : String = "url"

Config()
getInstance()
getAvailableConfigs()
addConfig()
getXMLBaseURL()
setXMLBaseURL()
getApplicationName()
setApplicationName()
getCopyright()
setCopyright()
addMapping()
getMapping()
getMappings()
load()
readConfig()
initApplication()
initAdapters()
initMaps()
initConfigs()

(f rom conf ig)

-$instance

ConfigMapEntry

inputDTD : String = null
outputDTD : String = null
xsltFunction : String = null

ConfigMapEntry()
getInputDTD()
getOutputDTD()
getXsltFunction()

(f rom conf ig)

Configuration

name : String = null
dir : String = null
dtd : String = null

Configuration()
toString()
getOutputDTD()
getName()
getOutputDirectory()

(f rom conf ig)

Configuration

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 13

1. The method load() is called as soon as the Java Virtual Machine loads the class
Config.class.

2. The Config class
uses the System
class loader to
locate and read
the config.xml file.
For this reason
the config.xml file
must be located
somewhere within
the project
classpath. If the
application is
being run from the
NLNZ.jar file in
the deployment
package (see
solution
architecture) then
the class loader
can find the
config.xml file in
the same
directory as the jar file.

3. Application properties are read from the file.
4. The Adapter list is read from the file.
5. The XSLT map is read from the file.
6. The required output formats are read from the file.

Developing a new Adapter
This section explains how to create/develop a new adapter into the Metadata extractor
tool. As an example the MPEG-4 adapter is added to the existing tool. Presently the
Version of Metadata Extractor Tool is 3.5.

Once you have decided to add extractor for a chosen format and clear on the format’s
technical specification, there are two phases to complete this enhancement to the MDE
tool.

1. Creating a java adapter class for this format
2. Creating /modifying supporting files in order to enable this new adapter in the

MDE tool

 : System
 : Config :

ConfigMapEntry
config.xml : DataAdapter : MetaUtil : Configuration

load()

initMaps(org.w3c.dom.Node)

opens

addMapping(String, String, String)

getM apping(input DTD, output DTD)
Once the output DTD and input
DTDs are known (output DTD is
the configuration output DTD and
the input DTD is the Output Type
of the Adapter) getMapping
requests the transformation script
(xslt) to perform that mapping

getOutputDTD()

getOutputType()

transform(XSLT, the input data)

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 14

Phase-1: Development
Creating MPEG4 Adapter

1. Create a new package nz.govt.natlib.adapter.new_adapter_class under the
C:\JavaDev\MDE\metadata-extractor\src\java folder. In our case we are creating
the following package nz.govt.natlib.adapter.mpeg4

2. Create a class newformatAdapter.java in our example we create

MPEG4Adapter.java that extends nz.govt.natlib.adapter.DataAdapter. Create
nz.govt.natlib.adapter.mpeg4.MPEG4Adapter.

3. This class implements all the abstract methods of DataAdapter. The important

methods are

AcceptsFile()
Whenever a file is selected for metadata extraction, that file is passed on to the
acceptsFile() method of the underlying adapter classes. The first matching adapter class
is used to perform the metadata extraction for this file.
This method implementation can differ from format to format. It could be as simple as to
identify the format by simply the file extension or device it’s own logic based on the
format specification of that file or use an external library to do this task. In case of the
MPEG4 adapter, we make use of an external library for both format identification and
extraction of the significant metadata for MPEG4 file format. For more details on the
implementation of this library please refer to the following project page link
http://code.google.com/p/mp4parser/

public abstract boolean acceptsFile(File file);

public abstract void adapt(File file, ParserContext out) throws
IOException;

public boolean acceptsFile(File file) {

try {
IsoFile isoFile = new IsoFile(new
FileRandomAccessDataSource(file));

 BoxFactory boxFactory = new BoxFactory();

IsoInputStream isoIn = new

IsoInputStream(isoFile.getOriginalIso());

 Box box = boxFactory.parseBox(isoIn, isoFile, null);
 if (box == null) {

LogManager.getInstance().logMessage(LogMessage.ERRO
R,"The input file does not implement ISO Mpeg4
Standards");

 return false;
 }else {
 return true;
 }

 }catch (Exception e) {
 return false;
 }

}

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 15

adapt()
This method extracts the different significant properties of the given file. It constructs an
internal hash map and also an xml displaying the properties in the order they are
supposed to appear according to the format specification for that file format.
The MPEG4 adapter is developed as a wrapper around a third party library, which
extracts these properties and returns to the MPEG4 adapter. The MPEG4 adapter then
builds the xml using these values.

Phase-2: Configuration

Once the new adapter code is ready in the metadata extractor source code, the next step
is to enable this adapter to be used by the MDE tool. In order to does that carry out the
following steps.

1. Build.xml

Change the build.xml located in the metadata-extractor folder to include the new adapter
while creating the build. Add an ant target to build this adapter.

2. Format.dtd

In the metadata-extractor\src\xml folder create a dtd to specify the significant properties
that the adapter has to extract. The name of the dtd file may be same as the adapter
package name for convince although it is not mandatory. A file by name mpeg4.dtd has
been created for the MPEG4 adapter. The content of this dtd determines the elements
of the xml that will be created by the adapter. In some of the adapters this dtd is not
being applied to validate the xml, but this dtd still needs to be there in the xml folder as it
is used in deciding which adapter will be assigned to extract the metadata for a given file.
For example in case of MPEG4 adapter it looks like the following snippet.

<!-- prepare the files for the mp4 adapter -->
<antcall target="adapter_build">

<param name="prm-adapter-type" value="mpeg4" />
 <param name="prm-adapter-name" value="mpeg4" />

<param name="prm-adapter-dir" value="mp4_adapter_1_0" />
</antcall>

public void adapt(File file, ParserContext ctx) {
 FileRandomAccessDataSource ds = null;
 try {
 ctx.fireStartParseEvent("MPEG4");
 writeFileInfo(file, ctx);
 ctx.fireEndParseEvent("MPEG4");
 ds = new FileRandomAccessDataSource(file);
 IsoFile isoFile = new IsoFile(ds);
 isoFile.parse();
 Box[] boxes = isoFile.getBoxes();
 openBox(boxes);

//Logic to extract metadata and write them into
the output xml as
//tags using the ParserContext goes here

 }

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 16

Dtd file content here

3. Format_to_nlnz_presmet.XSLT

In the metadata-extractor\src\xml folder create an XSLT file for the given format. This
XSLT determines the structure of the xml that will be created by the adapter. A file by
name mpeg4_to_nlnz_presmet.XSLT is created for the MPEG4 adapter. The following
snippet shows the content of this XSLT.

4. execution scripts
The scripts extract.bat, extract.sh, metadata.bat, metadata.sh located in the folder
metadata-extractor\src\scripts has to be changed to place the necessary jar files for this
adapter into the classpath.

5. Config.xml
The config.xml located in the folder metadata-extractor\src\xml has to be modified in the
following three locations

i <adapters>
The config file has to be updated to have the entries for the new adapter. This
makes the adapter available for the application. The element <adapters> should
have a new sub element <adapter> describing the new adapter. This step maps
the adapter class from its jar to the format.dtd for a given adapter. For example in
case of the MPEG4 the following lines are added.

ii <XSLT-map>
The mapping of the dtd, XSLT and the output xml is done in this tag. In case of
MPEG4 the following lines are added.

iii <profiles>

The adapter profile has to be defined here to let the MDE tool create the relevant
logs and be able to use the adapter individually. In case of MPEG4 the following
lines are added under <Profiles> element.

<adapters>
….
<adapter Class="nz.govt.natlib.adapter.mpeg4.MPEG4Adapter"

jar="mpeg4_adapter_1_0.jar" output-dtd="mpeg4.dtd" />
….
</adapters>

<map>

 <input-dtd doc-name="mpeg4.dtd" />

 <output-dtd doc-name="nlnz_presmet.xsd" />

 <xslt doc-name="mpeg4_to_nlnz_presmet.xslt" />

 </map>

Metadata Extraction Tool – Software Architecture

17 June, 2003 Page 17

<profiles default="Default">
<profile name="Default">

 <input-files dir="METADATA_BASE" />
 <log-dir dir="METADATA_BASE/logs" />
….
…
<adapter
class="nz.govt.natlib.adapter.mpeg4.MPEG4Adapter"

/>
 </profile>
</profiles>

